Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 242(5): 1891-1910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38649790

RESUMEN

Plant water uptake from the soil is a crucial element of the global hydrological cycle and essential for vegetation drought resilience. Yet, knowledge of how the distribution of water uptake depth (WUD) varies across species, climates, and seasons is scarce relative to our knowledge of aboveground plant functions. With a global literature review, we found that average WUD varied more among biomes than plant functional types (i.e. deciduous/evergreen broadleaves and conifers), illustrating the importance of the hydroclimate, especially precipitation seasonality, on WUD. By combining records of rooting depth with WUD, we observed a consistently deeper maximum rooting depth than WUD with the largest differences in arid regions - indicating that deep taproots act as lifelines while not contributing to the majority of water uptake. The most ubiquitous observation across the literature was that woody plants switch water sources to soil layers with the highest water availability within short timescales. Hence, seasonal shifts to deep soil layers occur across the globe when shallow soils are drying out, allowing continued transpiration and hydraulic safety. While there are still significant gaps in our understanding of WUD, the consistency across global ecosystems allows integration of existing knowledge into the next generation of vegetation process models.


Asunto(s)
Árboles , Agua , Agua/metabolismo , Árboles/fisiología , Suelo/química , Estaciones del Año , Raíces de Plantas/fisiología , Raíces de Plantas/metabolismo , Ecosistema , Geografía
2.
Sci Total Environ ; 928: 172282, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38614326

RESUMEN

Coastal cities are facing a rise in groundwater levels induced by sea level rise, further triggering saturation excess flooding where groundwater levels reach the topographic surface or reduce the storage capacity of the soil, thus stressing the existing infrastructure. Lowering groundwater levels is a priority for sustaining the long-term livelihood of coastal cities. In the absence of studies assessing the possibility of using tree-planting as a measure of alleviating saturation excess flooding in the context of rising groundwater levels, the multi-benefit nature of tree-planting programs as sustainable Nature-based solutions (NBSs) in coastal cities in the Global South is discussed. In environments where groundwater is shallow, trees uptake groundwater or reduce groundwater recharge, thereby contributing to lower groundwater levels and increasing the unsaturated zone thickness, further reducing the risk of saturation excess flooding. Tree-planting programs represent long-term solutions sustained by environmental factors that are complementary to conventional engineering solutions. The multi-benefit nature of such NBSs and the expected positive environmental, economic, and social outcomes make them particularly promising. Wide social acceptance was identified as crucial for the long-term success of any tree-planting program, as the social factor plays a major role in addressing most weaknesses and threats of the solution. In the case of Nouakchott City (Mauritania), where a rise in groundwater levels has led to permanent saturation excess flooding, a tree-planting program has the potential to lower the groundwater levels, thereby reducing flooding during the rainy season.

3.
Plant Cell Environ ; 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38348610

RESUMEN

An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.

4.
J Exp Bot ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38375924

RESUMEN

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particularly the importance of morphological vs. hydraulic plasticity. Using a long-term (20 years) irrigation experiment in a natural forest, we investigated the acclimation of Pinus sylvestris morpho-anatomical (stomatal anatomy and crown density) and hydraulic traits (leaf water potential, vulnerability to cavitation Ψ50, hydraulic conductivity Ks, and tree water deficit TWD) to prolonged changes in soil moisture. We found that low water availability reduced twig water potential and increased TWD during the growing season. Still, the trees showed limited adjustments in most branch-level hydraulic traits (Ψ50 and Ks) and needle anatomy. In contrast, trees acclimated to prolonged irrigation by increasing their crown density and, hence, the canopy water demand. This study demonstrates that despite substantial canopy adjustments, P. sylvestris may be vulnerable to extreme droughts because of limited adjustment potential in their hydraulic system. While sparser canopies reduce the water demand, such shifts take decades to occur under chronic water deficits and might not mitigate short-term extreme drought events.

5.
New Phytol ; 241(3): 1021-1034, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37897156

RESUMEN

Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak. Using modeling, we estimated species interaction effects on timing to drought-induced mortality and the underlying mechanisms driving these impacts. We show that mixtures mitigate adverse heat and drought impacts for oak (less negative leaf water potential, higher stomatal conductance, and delayed stomatal closure) but enhance them for beech (lower water potential and stomatal conductance, narrower leaf safety margins, faster tree mortality). Potential underlying mechanisms include oak's larger canopy and higher transpiration, allowing for quicker exhaustion of soil water in mixtures. Our findings highlight that diversity has the potential to alter the effects of extreme events, which would ensure that some species persist even if others remain sensitive. Among the many processes driving diversity effects, differences in canopy size and transpiration associated with the stomatal regulation strategy seem the primary mechanisms driving mortality vulnerability in mixed seedling plantations.


Asunto(s)
Fagus , Quercus , Plantones , Calor , Sequías , Transpiración de Plantas/fisiología , Hojas de la Planta/fisiología , Árboles , Agua/fisiología
6.
Plant Physiol ; 194(2): 741-757, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-37874743

RESUMEN

Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.


Asunto(s)
Fagus , Quercus , Estaciones del Año , Suelo/química , Carbono , Fagus/fisiología , Quercus/fisiología , Árboles
7.
New Phytol ; 240(1): 127-137, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37483100

RESUMEN

Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (Tcrit ), temperature and photosynthetic optima (Topt and Aopt ), and canopy temperature (Tcan ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and Tcan regulation. In this study, we measured the effect of soil moisture on the seasonal and diurnal dynamics of net photosynthesis (A), stomatal conductance (gs ), and Tcan , as well as the thermal plasticity of photosynthesis (Tcrit , Topt , and Aopt ), over the course of 1 yr using a long-term irrigation experiment in a drought-prone Pinus sylvestris forest in Switzerland. Irrigation resulted in higher needle-level A, gs , Topt , and Aopt compared with naturally drought-exposed trees. No daily or seasonal differences in Tcan were observed between treatments. Trees operated below their thermal thresholds (Tcrit ), independently of soil moisture content. Despite strong Tcan and Tair coupling, we provide evidence that drought reduces trees' temperature optimum due to a substantial reduction of gs during warm and dry periods of the year. These findings provide important insights regarding the effects of soil drought on the thermal tolerance of P. sylvestris.


Asunto(s)
Pinus sylvestris , Pinus , Pinus sylvestris/fisiología , Suelo , Temperatura , Hojas de la Planta/fisiología , Bosques , Fotosíntesis/fisiología , Árboles/fisiología , Sequías , Pinus/fisiología
8.
New Phytol ; 239(2): 533-546, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235688

RESUMEN

Trees remain sufficiently hydrated during drought by closing stomata and reducing canopy conductance (Gc ) in response to variations in atmospheric water demand and soil water availability. Thresholds that control the reduction of Gc are proposed to optimize hydraulic safety against carbon assimilation efficiency. However, the link between Gc and the ability of stem tissues to rehydrate at night remains unclear. We investigated whether species-specific Gc responses aim to prevent branch embolisms, or enable night-time stem rehydration, which is critical for turgor-dependent growth. For this, we used a unique combination of concurrent dendrometer, sap flow and leaf water potential measurements and collected branch-vulnerability curves of six common European tree species. Species-specific Gc reduction was weakly related to the water potentials at which 50% of branch xylem conductivity is lost (P50 ). Instead, we found a stronger relationship with stem rehydration. Species with a stronger Gc control were less effective at refilling stem-water storage as the soil dries, which appeared related to their xylem architecture. Our findings highlight the importance of stem rehydration for water-use regulation in mature trees, which likely relates to the maintenance of adequate stem turgor. We thus conclude that stem rehydration must complement the widely accepted safety-efficiency stomatal control paradigm.


Asunto(s)
Hojas de la Planta , Árboles , Árboles/fisiología , Hojas de la Planta/fisiología , Xilema/fisiología , Agua/fisiología , Sequías , Fluidoterapia
9.
Nat Commun ; 14(1): 1959, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029120

RESUMEN

Plant survival depends on a balance between carbon supply and demand. When carbon supply becomes limited, plants buffer demand by using stored carbohydrates (sugar and starch). During drought, NSCs (non-structural carbohydrates) may accumulate if growth stops before photosynthesis. This expectation is pervasive, yet few studies have combined simultaneous measurements of drought, photosynthesis, growth, and carbon storage to test this. Using a field experiment with mature trees in a semi-arid woodland, we show that growth and photosynthesis slow in parallel as [Formula: see text] declines, preventing carbon storage in two species of conifer (J. monosperma and P. edulis). During experimental drought, growth and photosynthesis were frequently co-limited. Our results point to an alternative perspective on how plants use carbon that views growth and photosynthesis as independent processes both regulated by water availability.


Asunto(s)
Bosques , Árboles , Carbohidratos , Fotosíntesis , Almidón , Sequías , Hojas de la Planta , Agua
11.
Plant Cell Environ ; 45(11): 3275-3289, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36030547

RESUMEN

Temperature (T) and vapour pressure deficit (VPD) are important drivers of plant hydraulic conductivity, growth, mortality, and ecosystem productivity, independently of soil water availability. Our goal was to disentangle the effects of T and VPD on plant hydraulic responses. Young trees of Fagus sylvatica L., Quercus pubescens Willd. and Quercus ilex L. were exposed to a cross-combination of a T and VPD manipulation under unlimited soil water availability. Stem hydraulic conductivity and leaf-level hydraulic traits (e.g., gas exchange and osmotic adjustment) were tracked over a full growing season. Significant loss of xylem conductive area (PLA) was found in F. sylvatica and Q. pubescens due to rising VPD and T, but not in Q. ilex. Increasing T aggravated the effects of high VPD in F. sylvatica only. PLA was driven by maximum hydraulic conductivity and minimum leaf conductance, suggesting that high transpiration and water loss after stomatal closure contributed to plant hydraulic stress. This study shows for the first time that rising VPD and T lead to losses of stem conductivity even when soil water is not limiting, highlighting their rising importance in plant mortality mechanisms in the future.


Asunto(s)
Quercus , Suelo , Sequías , Ecosistema , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Poliésteres , Quercus/fisiología , Temperatura , Presión de Vapor , Agua/fisiología
12.
New Phytol ; 236(2): 547-560, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35842790

RESUMEN

Increased temperature and prolonged soil moisture reduction have distinct impacts on tree photosynthetic properties. Yet, our knowledge of their combined effect is limited. Moreover, how species interactions alter photosynthetic responses to warming and drought remains unclear. Using mesocosms, we studied how photosynthetic properties of European beech and downy oak were impacted by multi-year warming and soil moisture reduction alone or combined, and how species interactions (intra- vs inter-specific interactions) modulated these effects. Warming of +5°C enhanced photosynthetic properties in oak but not beech, while moisture reduction decreased them in both species. Combined warming and moisture reduction reduced photosynthetic properties for both species, but no exacerbated effects were observed. Oak was less impacted by combined warming and limited moisture when interacting with beech than in intra-specific stands. For beech, species interactions had no impact on the photosynthetic responses to warming and moisture reduction, alone or combined. Warming had either no or beneficial effects on the photosynthetic properties, while moisture reduction and their combined effects strongly reduced photosynthetic responses. However, inter-specific interactions mitigated the adverse impacts of combined warming and drought in oak, thereby highlighting the need to deepen our understanding of the role of species interactions under climate change.


Asunto(s)
Fagus , Árboles , Sequías , Fagus/fisiología , Fotosíntesis/fisiología , Suelo , Temperatura
13.
Tree Physiol ; 42(9): 1720-1735, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35285500

RESUMEN

Understanding plant trait coordination and variance across climatic gradients is critical for assessing forests' adaptive potential to climate change. We measured 11 hydraulic, anatomical and leaf-level physiological traits in European beech (Fagus sylvatica L.) along a moisture and temperature gradient in the French Alps. We assessed how traits covaried, and how their population-level variances shifted along the gradient. The intrapopulation variances of vessel size and xylem-specific conductivity reduced in colder locations as narrow vessels were observed in response to low temperature. This decreased individual-level water transport capacity compared with the warmer and more xeric sites. Conversely, the maximum stomatal conductance and Huber value variances were constrained in the arid and warm locations, where trees showed restricted gas exchange and higher xylem-specific conductivity. The populations growing under drier and warmer conditions presented wide variance for the xylem anatomical and hydraulic traits. Our results suggest that short-term physiological acclimation to raising aridity and heat in southern beech populations may occur mainly at the leaf level. Furthermore, the wide variance of the xylem anatomical and hydraulic traits at these sites may be advantageous since more heterogeneous hydraulic conductivity could imply populations' greater tree-tree complementarity and resilience against climatic variability. Our study highlights that both intrapopulation trait variance and trait network analysis are key approaches for understanding species adaptation and the acclimation potential to a shifting environment.


Asunto(s)
Fagus , Frío , Fagus/fisiología , Hojas de la Planta/fisiología , Árboles/fisiología , Agua , Xilema/fisiología
14.
J Exp Bot ; 73(8): 2576-2588, 2022 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-35134157

RESUMEN

Future climate will be characterized by an increase in frequency and duration of drought and warming that exacerbates atmospheric evaporative demand. How trees acclimate to long-term soil moisture changes and whether these long-term changes alter trees' sensitivity to short-term (day to months) variations of vapor pressure deficit (VPD) and soil moisture is largely unknown. Leaf gas exchange measurements were performed within a long-term (17 years) irrigation experiment in a drought-prone Scots pine-dominated forest in one of Switzerland's driest areas on trees in naturally dry (control), irrigated, and 'irrigation-stop' (after 11 years of irrigation) conditions. Seventeen years of irrigation increased photosynthesis (A) and stomatal conductance (gs) and reduced gs sensitivity to increasing VPD and soil drying. Following irrigation-stop, gas exchange decreased only after 3 years. After 5 years, maximum carboxylation (Vcmax) and electron transport (Jmax) rates in irrigation-stop recovered to similar levels as to before the irrigation-stop. These results suggest that long-term release from soil drought reduces the sensitivity to VPD and that atmospheric constraints may play an increasingly important role in combination with soil drought. Moreover, our study indicates that structural adjustments lead to an attenuation of initially strong leaf-level acclimation to strong multiple-year drought.


Asunto(s)
Sequías , Árboles , Aclimatación , Bosques , Fotosíntesis , Hojas de la Planta/química , Suelo , Agua/análisis
15.
Oecologia ; 197(4): 921-938, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34657177

RESUMEN

Heat and drought affect plant chemical defenses and thereby plant susceptibility to pests and pathogens. Monoterpenes are of particular importance for conifers as they play critical roles in defense against bark beetles. To date, work seeking to understand the impacts of heat and drought on monoterpenes has primarily focused on young potted seedlings, leaving it unclear how older age classes that are more vulnerable to bark beetles might respond to stress. Furthermore, we lack a clear picture of what carbon resources might be prioritized to support monoterpene synthesis under drought stress. To address this, we measured needle and woody tissue monoterpene concentrations and physiological variables simultaneously from mature piñon pines (Pinus edulis) from a unique temperature and drought manipulation field experiment. While heat had no effect on total monoterpene concentrations, trees under combined heat and drought stress exhibited ~ 85% and 35% increases in needle and woody tissue, respectively, over multiple years. Plant physiological variables like maximum photosynthesis each explained less than 10% of the variation in total monoterpenes for both tissue types while starch and glucose + fructose measured 1-month prior explained ~ 45% and 60% of the variation in woody tissue total monoterpene concentrations. Although total monoterpenes increased under combined stress, some key monoterpenes with known roles in bark beetle ecology decreased. These shifts may make trees more favorable for bark beetle attack rather than well defended, which one might conclude if only considering total monoterpene concentrations. Our results point to cumulative and synergistic effects of heat and drought that may reprioritize carbon allocation of specific non-structural carbohydrates toward defense.


Asunto(s)
Escarabajos , Pinus , Animales , Sequías , Calor , Asignación de Recursos , Árboles
16.
Plant Cell Environ ; 44(12): 3623-3635, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506038

RESUMEN

Short-term plant respiration (R) increases exponentially with rising temperature, but drought could reduce respiration by reducing growth and metabolism. Acclimation may alter these responses. We examined if species with different drought responses would differ in foliar R response to +4.8°C temperature and -45% precipitation in a field experiment with mature piñon and juniper trees, and if any differences between species were related to differences in photosynthesis rates, shoot growth and nonstructural carbohydrates (NSCs). Short-term foliar R had a Q10 of 1.6 for piñon and 2.6 for juniper. Piñon foliar R did not respond to the +4.8°C temperatures, but R increased 1.4× for juniper. Across treatments, piñon foliage had higher growth, lower NSC content, 29% lower photosynthesis rates, and 44% lower R than juniper. Removing 45% precipitation had little impact on R for either species. Species differences in the response of R under elevated temperature were related to substrate availability and stomatal response to leaf water potential. Despite not acclimating to the higher temperature and having higher R than piñon, greater substrate availability in juniper suggests it could supply respiratory demand for much longer than piñon. Species responses will be critical in ecosystem response to a warmer climate.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Sequías , Calor , Juniperus/fisiología , Fotosíntesis , Pinus/fisiología , Hojas de la Planta/fisiología , Juniperus/crecimiento & desarrollo , Pinus/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo
17.
Glob Chang Biol ; 27(24): 6454-6466, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469040

RESUMEN

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates. While empirical measurements of aboveground traits revealed homeostatic maintenance of plant water status and traits in response to reduced soil moisture, modeled belowground dynamics revealed that trees in the drought treatment shifted the depth from which water was acquired to deeper soil layers. These findings reveal that belowground acclimation of tree water uptake depth may buffer tropical rainforests from more severe droughts that may arise in future with climate change.


Asunto(s)
Árboles , Agua , Carbono , Sequías , Bosques , Hojas de la Planta , Bosque Lluvioso
18.
New Phytol ; 229(2): 831-844, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32918833

RESUMEN

Conifer mortality rates are increasing in western North America, but the physiological mechanisms underlying this trend are not well understood. We examined tree-ring-based radial growth along with stable carbon (C) and oxygen (O) isotope composition (δ13 C and δ18 O, respectively) of dying and surviving conifers at eight old-growth forest sites across a strong moisture gradient in the western USA to retrospectively investigate mortality predispositions. Compared with surviving trees, lower growth of dying trees was detected at least one decade before mortality at seven of the eight sites. Intrinsic water-use efficiency increased over time in both dying and surviving trees, with a weaker increase in dying trees at five of the eight sites. C starvation was a strong correlate of conifer mortality based on a conceptual model incorporating growth, δ13 C, and δ18 O. However, this approach does not capture processes that occur in the final months of survival. Ultimately, C starvation may lead to increased mortality vulnerability, but hydraulic failure or biotic attack may dominate the process during the end stages of mortality in these conifers.


Asunto(s)
Tracheophyta , Isótopos de Carbono/análisis , Sequías , América del Norte , Estudios Retrospectivos , Árboles , Agua
19.
Science ; 368(6494)2020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32467364

RESUMEN

Forest dynamics arise from the interplay of environmental drivers and disturbances with the demographic processes of recruitment, growth, and mortality, subsequently driving biomass and species composition. However, forest disturbances and subsequent recovery are shifting with global changes in climate and land use, altering these dynamics. Changes in environmental drivers, land use, and disturbance regimes are forcing forests toward younger, shorter stands. Rising carbon dioxide, acclimation, adaptation, and migration can influence these impacts. Recent developments in Earth system models support increasingly realistic simulations of vegetation dynamics. In parallel, emerging remote sensing datasets promise qualitatively new and more abundant data on the underlying processes and consequences for vegetation structure. When combined, these advances hold promise for improving the scientific understanding of changes in vegetation demographics and disturbances.


Asunto(s)
Aclimatación , Biomasa , Cambio Climático , Bosques , Árboles/crecimiento & desarrollo , Dióxido de Carbono/análisis , Modelos Biológicos
20.
New Phytol ; 226(6): 1550-1566, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32064613

RESUMEN

Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes and has been established as a major contributor in recent drought-induced plant mortality independent of other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in 'next-generation' land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.


Asunto(s)
Estomas de Plantas , Transpiración de Plantas , Ecosistema , Hojas de la Planta , Presión de Vapor , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...